
PointNeRF++: A multi-scale, point-based
Neural Radiance Field

Weiwei Sun1 Eduard Trulls2 Yang-Che Tseng1 Sneha Sambandam1

Gopal Sharma1 Andrea Tagliasacchi3,4,5 Kwang Moo Yi1

1University of British Columbia 2Google Research
3Google DeepMind 4Simon Fraser University 5University of Toronto

https://pointnerfpp.github.io

Abstract. Point clouds offer an attractive source of information to com-
plement images in neural scene representations, especially when few im-
ages are available. Neural rendering methods based on point clouds do
exist, but they do not perform well when the point cloud quality is low—
e.g . sparse or incomplete, which is often the case with real-world data. We
overcome these problems with a simple representation that aggregates
point clouds at multiple scale levels with sparse voxel grids at different
resolutions. To deal with point cloud sparsity, we average across multiple
scale levels—but only among those that are valid, i.e., that have enough
neighboring points in proximity to the ray of a pixel. To help model
areas without points, we add a global voxel at the coarsest scale, thus
unifying “classical” and point-based NeRF formulations. We validate our
method on the NeRF Synthetic, ScanNet, and KITTI-360 datasets, out-
performing the state of the art, with a significant gap compared to other
NeRF-based methods, especially on more challenging scenes.

Keywords: Point Cloud · Multi-Scale · Neural Radiance Field

1 Introduction

With the introduction of Neural Radiance Fields (NeRF) [29], the quality of
novel-view synthesis from a collection of images has increased dramatically. How-
ever, the problem is far from solved when field-of-view overlaps sparsely amongst
cameras [7, 21, 54], which makes them difficult to apply to many uncontrolled,
real-world scenarios. Researchers have attempted to solve this problem in var-
ious ways, including content-based regularization [21], patch-based regulariza-
tion [31], image features [54], or diffusion priors [11,51].

One way to address this issue is to leverage point clouds obtained from ad-
ditional sensors and/or photogrammetry [32, 42, 53]. The use of point clouds
(as a representation) for neural rendering was pioneered by PointNeRF [53],
which demonstrated that point clouds can indeed help achieve higher-quality
renderings. However, as we demonstrate through experiments, the benefits of

https://pointnerfpp.github.io


2 Sun et al.

Fig. 1: Teaser – We introduce a novel volume-rendering framework to effectively lever-
age point clouds for Neural Radiance Fields. Our formulation aggregates points over
multiple scales—including a global scale governing the entire scene, equivalent to the
standard, point-agnostic NeRF. Our solution leads to much better novel-view synthesis
in challenging real-world situations with sparse or incomplete point clouds. Here, we
show example renderings from the KITTI-360 test set.

PointNeRF diminish when point clouds are sparse and/or incomplete. This is
often the case in most real-world applications, such as for point clouds obtained
by LiDAR scanners in autonomous-driving datasets [3,15–17,20,27,45]. We posit
that this shortcoming is mainly due to a missing key element: the lack of multi-
scale modeling within the architecture of PointNeRF. Multi-scale modeling is
helpful in point cloud processing, as small ‘holes’ (regions without points) can
often be naturally filled-in via multi-scale aggregation. We liken this intuition
to that followed by two seminal papers in point cloud semantic understanding—
PointNet [38] and PointNet++ [39]—where the latter improved upon the former
by simply introducing a multi-scale network design, and the notion of hierarchi-
cal structure.

In this paper, we introduce a simple multi-scale representation for point
cloud-based rendering. Specifically, we aggregate point clouds at various scale
levels, defined as voxel grids (Sec. 3.1), up to a scale level that encompasses
the entire scene. We then use this multi-scale representation to volume-render
as in PointNeRF (Sec. 3.2)—but instead of averaging features locally, we do so
across multiple scale levels. This allows us to naturally deal with the sparsity
of point clouds, without the need for failure-prone heuristics such as ‘pruning’



PointNeRF++ 3

and ‘growing’ from PointNeRF [53]. To account for the large support region re-
quired at coarser scales, we propose to replace the commonly used Multi-Layer
Perceptron (MLP) with a tri-plane representation (Sec. 3.3). We note that using
a single voxel at the coarsest scale (i.e., global) is equivalent to a ‘standard’
(i.e., not point-based) NeRF model. Therefore, in a sense, our solution unifies
classical with point cloud-based NeRF formulations (Sec. 3.1).

As we illustrate in Figure 1, our approach results in novel-view synthesis that
is of significantly higher quality than previous methods. Compared to Point-
NeRF, our approach is able to deal with regions with both high and low point
cloud density, even those without points (highlighted with red boxes). The re-
cently popular 3D Gaussian Splatting [23] also suffers at these empty regions
as Gaussians are often initialized from point clouds. We evaluate our method
across three datasets, NeRF Synthetic [29], ScanNet [9], and KITTI-360 [27],
significantly outperforming the state of the art (Sec. 4).

We summarize our main contributions:
– we introduce an effective multi-scale representation for point-based NeRF;
– we propose to incorporate a global voxel/scale, uniting “classical” and point-

based NeRF formulations;
– we propose to use a tri-plane representation for coarser scales to effectively

cover larger support regions;
– we outperform all baselines, and specifically show large improvements over

point-based NeRF, especially when the point clouds are sparse or incomplete.

2 Related work

The introduction of Neural Radiance Fields [29] represented a paradigm shift
for scene representation and realistic novel-view synthesis. NeRF employs a 5D
implicit function to model a scene through a continuous volumetric approach,
which estimates both density and radiance for any given position and direction.
Among many applications [14], NeRFs have been used to reconstruct individual
objects [29] and unbounded scenes [2], in uncontrolled [8, 28, 52] or dynamic
environments [22, 33, 34, 36, 37], in few-shot settings [7, 21, 31, 51, 54] and large
urban landscapes [42,46,50].
Accelerated training. While NeRF yields remarkable results, this comes at
the cost of long training time, owing to the need to evaluate large MLP models
hundreds of times for each pixel. The prevailing approach to tackling this issue
involves making a trade-off between compute and memory. This is achieved
by storing features within various types of grids, including dense grids [13],
sparse grids [18], multi-resolution hash grids [30], large sets of small MLPs [40],
low-rank tensor approximations of dense grids [6, 12], and hybrid planar and
volumetric representations [41].
Neural rendering with point clouds. While the techniques above can train
efficiently, it is difficult to adapt them to model large environments. An alter-
native approach is to use point clouds to model the geometric structure of the
scene [4, 5, 23, 32, 53]. Point clouds can have variable density, helping allocate



4 Sun et al.

Fig. 2: Overview – Given an input point cloud, we aggregate it over multi-scale voxel
grids (Sec. 3.1). For clarity, we draw the voxel grids in 2D. We then perform volume
rendering based on points, relying on feature vectors stored thereon, which we aggregate
across multiple scales (Sec. 3.2). Importantly, when aggregating across scales, we only
take into account ‘valid’ scales, i.e., those with nearby points—indicated with solid
blue lines and illustrated as the two overlaid scales in the middle—naturally dealing
with incomplete/sparse point clouds. The coarsest scale (the top row in the figure) is
a single, global voxel, equivalent to standard NeRF—i.e., it is not point-based.

computational resources where needed, and conveniently (not) represent empty
space. To perform volume rendering, point cloud features are queried in the local
neighborhood of a ray to produce density and color. These approaches can be
classified on the basis of their neural point representations, e.g . per-point fea-
tures [5, 53], factorized volumetric representations [19], tetrahedral meshes [25],
and learnable Gaussians [23].

With PointNeRF, Xu et al. [53] and Chang et al. [5] use point cloud data
to learn per-scene representations, by querying per-point features within a lo-
cal neighborhood. Kulhanek et al. [25] create tetrahedra using the points from
COLMAP [44] and use barycentric interpolation to query the features within a
tetrahedron. Gaussian splatting [23] represents a 3D scene with 3D anisotropic
Gaussians initialized by COLMAP, and optimizes their location to faithfully
represent the scene. Despite the high rendering quality, overall, Gaussian splat-
ting is limited by the heuristics that they use to grow and prune points, similar
to PointNeRF. For example, as shown in Fig. 1. In contrast to these works, our
approach builds a hierarchy of feature representation, efficiently aggregating fea-
tures in the local neighborhood at different levels; does not require optimizing
the location of the points nor heuristics to grow and prune points; and leads to
superior performance even with sparse or incomplete point clouds.

Finally, rather than using geometric proximity, one can learn a point-to-query
affinity function via transformers. Ost et al. [32] use transformers to combine
features of points along a ray to predict its color. A shortcoming of this approach
is that it does not take into account occlusions and combines all points in the
neighborhood of a ray. Similarly, Chang et al. [4] use a set-transformer to find ray-
surface intersections and use local features and blending weights to estimate ray
colors. Both of these approaches are different from ours, as we employ geometric,
rather than learned, proximity.



PointNeRF++ 5

3 Method

An overview of our method is shown in Fig. 2. We build a representation starting
from an input point cloud, which we then use to volume-render [29] a scene.
Specifically, given an input point cloud Pin, we spatially aggregate the point
cloud to build a point cloud hierarchy with S levels. Denoting this operation as
A(.), we write

{Ps}Ss=1 = A(Pin), (1)

and equip each point cloud level Ps with randomly initialized point features Fs.
We then optimize the features Fs by volume-rendering them along a ray (pixel)
r by R(.), so that the estimated color matches that of the ground-truth pixels
Cgt, using a photometric loss:

argmin
{Fs}

Er

[
∥Cgt(r)−R(r|{Ps,Fs})∥22

]
. (2)

We next detail our multi-scale aggregation strategy to define a hierarchical rep-
resentation for point clouds (Sec. 3.1), and how we use it to volume-render a
scene (Sec. 3.2). Finally, we propose to use a tri-plane-based feature representa-
tion in lieu of MLPs, in order to obtain a good trade-off between representation
capacity and speed (Sec. 3.3).

3.1 Multi-scale aggregation – A

We first detail our aggregation operation A in Eq. (1). To obtain a point cloud
that represents a desired scale level s, we cluster based on voxels. At level s,
consider a regular grid of resolution Vs×Vs×Vs, consisting of a set of voxels
{Vv

s}. We perform voxel-wise clustering to determine one representative point
per voxel as

pv
s = Ep∈Vv

s
[p] s.t. p ∈ Pin. (3)

Importantly, note that this is performed only over non-empty voxels, hence
the resulting representation is sparse. Note also that the aggregation is built at
each scale level independently, and that while some fine-grained scales may not
have valid aggregated points, more space regions will be covered at the coarser
scales. This allows for point clouds with variable density, or even incomplete
ones to a certain degree, to be dealt with naturally. Finally, we set the coarsest
voxel to cover the entire scene, effectively setting p0

0 = Ep∈Pin [p]. This coarsest
scale can also be understood as a global NeRF model that is independent of the
local distribution of the point cloud—providing a unified representation for both
standard and point-based NeRF.

3.2 Point-based rendering – R

We use volume rendering to render an image from the multi-scale point cloud.
Given a set of quadrature points along ray q ∈ r, let us denote the volume
rendering integral [29]

Ĉr = Rq∈r (cq, σq) , (4)



6 Sun et al.

Fig. 3: Increasing coverage with multiple scales – We illustrate our sparse, hi-
erarchical representation at three granularity levels, including a single, global voxel
(left). We also show three query points, with their respective neighborhoods (dotted
circles) at each scale level—color-coded in blue if they have neighbouring features, and
in orange if they do not. Our multi-scale approach naturally fills in empty regions,
removing the need for failure-prone region-growing heuristics [53]. Drawn in 2D, for
clarity.

where cq is the radiance and σq is the density of a location q in space. To
obtain these values, we operate on our point cloud hierarchy, as opposed to the
raw point cloud Pin as in PointNeRF [53]. More explicitly, we extend [53] to
multiple scales by averaging over valid scale levels, i.e., scale levels with any
points within the vicinity of q:

cq, σq = M
(
Es∈S(q,{Ps})

[
E (q | Ps,Fs)

])
, (5)

where S(q, {Ps}) is the set of valid scale levels associated to query q; E is the
feature extraction operation in PointNeRF [53] that converts the point cloud into
a feature embedding at the query location q; and M is an MLP that converts
those feature embeddings into radiance and density. We now describe S and E
in more detail.
Valid scale levels – S(q, {Ps}). Given a scale S, define N the local neighbors
of q within distance τVs, where τ is the threshold ratio:

N (q,Ps) =
{
p | p ∈ Ps & ∥p− q∥2 ≤ τVs

}
. (6)

which is then aggregated across levels to define:

S(q, {Ps}) = {s | N (q,Ps) ̸= ∅} , (7)

Point cloud to feature embedding – E(q | Ps,Fs). We aggregate the fea-
tures within the support defined by Eq. (6) using normalized inverse-distance
weights w(p,q) = (∥p−q∥2+ε)−1, where ε is a small number to avoid numerical
problems:

E(q|Ps,Fs)=

∑
p∈N (q,Ps)

w(p,q) F
(
fp,p− q

)∑
p∈N (q,Ps)

w(p,q)
, (8)



PointNeRF++ 7

where F is a learnable function, and fp is the feature in Fs corresponding to
p ∈ Ps. Note that this is a simplified version of PointNeRF [53], as we do
not use ‘per-point‘ weights [53, Sec. 4.1], which we experimentally found to not
contribute to improvements in rendering quality. Rather than relying on large
MLPs to implement F at coarse levels s, we employ a tri-plane representation,
described in Sec. 3.3. This effectively increases the representation power of F
at coarse levels so that less populated regions in space can still be modeled
effectively, without incurring an excessive computational burden.

3.3 Per-point tri-plane features

As illustrated in Figure 3, points in coarser levels represent larger regions, and
thus require preserving more information into each point feature. We could solve
this by increasing either the feature dimension or the capacity of the MLPs
used to parameterize F . They both come with a hefty price, greatly increasing
the computational cost incurred to evaluate F . Instead, we build on recently-
proposed factorized representations [12], and represent local features with a local
tri-plane factorization. In more detail, we store features within three orthogonal
feature planes fp ≡ {fXY

p , fY Z
p , fXZ

p }, which are then accessed at (local) 3D
coordinates u = (q− p)/(τVs):

F
(
fp,u

)
= fXY

p [u] + fY Z
p [u] + fXZ

p [u], (9)

where f∗∗p [u] denotes querying the plane at position u with bilinear interpolation.
We combine tri-planes at coarser levels with the standard MLPs at finer levels,
where we find the latter are sufficient (see Sec. 4.1 for details). At first glance,
Eq. (9) may seem like a large deviation from using an MLP, since the features
seem to be independent of each other, due to the lack of a shared MLP. Note,
however, that those features are eventually processed by the shared decoder M
that converts them into radiance field values. Finally, we note that at the coarsest
scale level, i.e., the global voxel, our representation is effectively K-Planes [12].

4 Results

4.1 Experimental setup

Datasets and metrics. We primarily use Peak Signal-to-Noise Ratio (PSNR)
as a metric, and also structural (SSIM [49]) and perceptual (LPIPS [55]) simi-
larity. We evaluate our method on three well-known datasets:
– KITTI-360 [27] is a recent benchmark of outdoor driving sequences, highly
challenging due to the sparsity of views, which have much less visual overlap
than other datasets. Each sequence consists of an average of 80 images. We use
a random 10% subset for validation purposes, and also for our ablation study, as
the ground truth for the test set is not publicly available. To obtain results on the
test set, we follow the standard practice of training with the entire training set,
to roughly the same number of iterations required for convergence, discovered



8 Sun et al.

with the validation split. We use the point clouds provided with the dataset,
from LiDAR scans that are accumulated over all views. As this accumulated
point cloud is very dense, we resample it over a grid with a cell size of 8cm, and
remove points outside the camera frustum of the training views to make it more
tractable.
– ScanNet [9] is a dataset of indoor scans. We use the point clouds provided with
the dataset, which are sampled from mesh reconstructions using RGB-D cameras
with BundleFusion [10]. Following PointNeRF [53], we evaluate on two scenes,
Scene-101 and Scene-241. The point cloud in Scene-101 has more incomplete
regions, which makes it harder than Scene-241. As in PointNeRF [53], we sample
20% of the images, i.e. 1463 images for Scene-241, and 1000 images for Scene-101,
for training, and use the rest for evaluation. We use the code provided by [53].
– NeRF Synthetic [29] is a synthetic dataset with eight objects, each with 100
training images and 200 test images. The images are purely synthetic, rendered
with Blender. We use this dataset, as in PointNeRF [53], to validate our method
when the scene is favorable to the standard NeRF setting. We take the point
clouds provided by PointNeRF [53], which are obtained with COLMAP [44].

Implementation details. We implement our method with PyTorch [35]. We
use a total of 5 scale levels, including the global scale. We use a tri-plane reso-
lution of 512× 512 for the global scale level. For the largest (i.e., coarsest) two
of the remaining scale levels we use tri-planes, where each tri-plane is built as a
small two-layer pyramid with 4 × 4 and 2 × 2 grid. For all tri-planes, we store
32-dimensional feature vectors followed by a four-layer MLP with 64 neurons.
For the remaining two (i.e., finest) scales, we simply use 32-dimensional point
features and a four-layer MLP with 64 neurons. To further allow for the global
scale to capture details that may be beyond the capacity of its resolution, we
augment the features extracted from the global tri-plane with positional encod-
ings with 5 frequencies, as in [53]. We found this to be especially important when
modeling large scenes, such as for KITTI-360. For M, we use one linear layer for
density prediction and a four-layer MLP with 64 neurons for its hidden layers
for color prediction.

To speed up neighborhood search, we rely on voxel-grid-based approximate
nearest neighbors, as in [53]. We use the same search radius as our neighbor-
hood threshold τ in Eq. (6) after normalizing so that the approximate search
is equivalent to a ball query. For speed-ups and to limit GPU memory growth,
we set the maximum number of neighboring points to 8 for ScanNet and NeRF
Synthetic, and 6 for KITTI-360, as the scenes are larger. We follow Point-
NeRF [53] to sample 400 points for each ray on ScanNet and NeRF Synthetic.
As KITTI-360 is larger, we sample 1,000 points for each ray to compensate. We
use the contraction function of [2] for regions outside the bounding box of the
point cloud. For KITTI-360, as in [42], we model the sky using a four-layer MLP
that maps ray direction to color. To improve sample efficiency, we also use a
proposal network [2].

We train our model with a single NVidia V100 GPU for 200k iterations. For
the learning rate we follow [53] and use the same exponential decaying scheduling



PointNeRF++ 9

(a) Input point
cloud [9]

(b) Gauss. Splat. [23]
& PointNeRF [53]

(c) PointNeRF++
(Ours)

(d) Ground truth

Fig. 4: Examples on KITTI-360 – We show novel-view renderings obtained with our
method, 3D Gaussian splatting [23] (pink colored, 1-4 rows ) and PointNeRF [53] (green
colored, 4-8 row) on a challenging outdoors dataset, using the same point clouds as
input. Our approach provides significantly sharper renderings with more details, and
better coverage in areas without points, where Gaussian Splatting and PointNeRF
produce highly salient artifacts highlighted with red boxes.

with an initial learning rate of 5e-4 for M and a larger initial learning rate of
2e-3 for F. Following [53], we decay every 1000k steps with a rate of 0.1. We
will make our code available with an Apache 2.0 license, for reproducibility.

4.2 KITTI-360 results – Fig. 4 and Tab. 1

We first compare our method to the state of the art on KITTI-360 [27], a chal-
lenging outdoors dataset with incomplete point clouds from real LiDAR mea-
surements.

Baselines. We report numbers on the hidden test set, which requires uploading
samples to the evaluation server to compare with methods featured on the public
leaderboard. We also report numbers on our validation split for methods that
do not have an entry in the public leaderboard. We consider methods based on
images and, optionally, semantics [1, 26, 29, 43, 48, 56] as well as those that use
the LiDAR point clouds [23,24,27,53]. Note that for all PointNeRF experiments
in this paper we use the point ‘pruning’ and ‘growing’ heuristics introduced in
their work [53, Sec. 4.2], which aim at improving geometry modeling and image
rendering quality, and can help deal with point cloud sparsity—our algorithm
does not rely on it.



10 Sun et al.

Table 1: Results on KITTI-360 [27] – Our method achieves the best performance
among methods that supervise only with color. It performs on par with those that also
rely on semantics. We provide results on the (public) validation set and the (hidden)
test set as some baselines have results for one, but not the other.

Validation Test

Uses
points PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w
/

Se
m

. Nerflets [56] ✗ – – – 21.69 – –
PNF [26] ✗ – – – 22.07 0.820 0.221
PLANeRF [48] ✗ – – – 22.64 0.855 0.200

C
ol

or
on

ly

FVS [43] ✗ – – – 20.00 0.790 0.193
NeRF [29] ✗ – – – 21.18 0.779 0.343
Mip-NeRF [1] ✗ – – – 21.54 0.778 0.365
PBNR [24] ✓ – – – 19.91 0.811 0.191
PCL [27] ✓ – – – 12.81 0.576 0.549
Gauss. Splat. [23] ✓ 18.59 0.642 0.257 22.08 0.844 0.139

PointNeRF [53] ✓ 17.63 0.629 0.337 19.44 0.796 0.266
Ours ✓ 20.05 0.665 0.305 22.44 0.828 0.212

Table 2: Results on two ScanNet scenes [9] as pre-processed by [53] – Our
method outperforms all others, especially PointNeRF, the method most similar to ours,
by a large margin demonstrating the effectiveness of our multi-scale approach.

Avg. Scene-101 Scene-241

Uses
points PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ PSNR↑

NeRF [29] ✗ 24.43 0.670 0.494 27.16 21.69
Gauss. Splat. [23] ✗ 29.56 0.812 0.301 29.01 30.11
Gauss. Splat. [23] ✓ 29.93 0.818 0.275 29.55 30.31

PointNeRF [53] ✓ 25.92 0.784 0.263 21.98 29.86
Ours ✓ 30.56 0.808 0.238 30.27 30.85

Discussions. We show qualitative highlights in Fig. 4 and report results on
Tab. 1. Our method achieves a new state of the art in the color-only category
among NeRF methods, and performs on par with methods that also use semantic
supervision and Gaussian Splatting. Importantly, we significantly improve over
other point-based methods. Compared with PointNeRF, our approach yields
better renderings on regions where the point cloud is sparse, and the global
scale allows us to tackle those with no nearby points, such as structures too far
away to be captured by LiDAR. Also of note is how Gaussian splatting, while
it provides improved rendering quality in terms of SSIM and LPIPS thanks to
its SSIM-based loss, can have failure modes, as highlighted in Fig. 4. We thus
believe combining our strategy of utilizing our multi-scale strategy with Gaussian
splatting can further lead to performance improvements, but we leave as future
work. Please refer to the appendix for video examples.



PointNeRF++ 11

(a) Input point
cloud [9]

(b) Gauss.
Splat. [23]

(c) PointNeRF [53] (d) Ours (e) Ground truth

Fig. 5: Examples on ScanNet – PointNeRF fails to reconstruct the scene on regions
where the point cloud is empty. Both our method and Gaussian Splatting are able to
fill them in, but our approach produces cleaner results, with fewer artifacts. This is
especially noticeable for Scene-101 (top and bottom rows), where the mesh has large
holes where PointNeRF fails to render meaningful pixels, even with their ‘growing’
heuristic that is aimed towards filling such gaps.

4.3 ScanNet results – Fig. 5 and Tab. 2

Next, we consider indoor scans, using ScanNet [9]. This dataset is less challenging
than KITTI-360, but is a typical use-case for point cloud-based neural rendering,
and is where the benefit of using point clouds was strongly demonstrated in
PointNeRF [53].

Baselines. We compare our method against NeRF [29], PointNeRF [53], and
Gaussian Splatting [23]. For the latter, we consider randomly initialized point
clouds as well as those provided by the dataset.

Discussions. As shown in Tab. 2 and Fig. 5, our method performs best. NeRF [29],
for this dataset does not perform well as the scene is relatively textureless and
smooth. PointNeRF [53] improves over it by leveraging the point clouds. It does,
however, have issues on Scene-101, because its point cloud has large incomplete
areas, which impair its performance, as shown in Fig. 5. Our method is able
to cope with these empty regions, thanks to our multi-scale framework. Inter-
estingly, Gaussian Splatting also works better than typical NeRF while trained
purely with images, even when starting from random points—point cloud ini-
tialization can further improve its performance. This suggests the importance of
including the notion of locality introduced by points to the representation. Our
method outperforms all baselines, point-based or not. We use point clouds from
mesh inputs instead of depth images, also reported by PointNeRF, as the latter
are extremely dense (see [53, Tbl. 8]).



12 Sun et al.

Table 3: PSNR↑ on NeRF Synthetic [29] – Our method performs best overall,
even on object-centric data with dense point clouds.

Uses
points Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [29] ✗ 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
Plenoxels [13] ✗ 31.76 33.98 25.35 31.83 36.81 34.1 29.14 33.26 29.62
InstantNGP [30] ✗ 33.18 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10
MipNeRF [1] ✗ 33.09 35.14 25.48 33.29 37.48 35.7 30.71 36.51 30.41
Gauss. Splat. [23] ✗ 33.32 35.83 26.15 34.87 37.72 35.78 30.00 35.36 30.80

FreqPCR [57] ✓ 31.24 33.06 25.95 32.19 35.82 31.56 29.69 33.64 27.97
TetraNeRF [25] ✓ 32.53 35.05 25.01 33.31 36.16 34.75 29.30 35.49 31.13
Gauss. Splat. [23] ✓ 33.60 36.10 26.17 34.87 37.77 36.14 30.15 36.48 31.12

PointNeRF [53] ✓ 31.77 35.09 25.01 33.24 35.49 32.65 26.97 35.54 30.18
Ours ✓ 33.70 36.32 26.11 34.43 37.45 36.75 30.32 36.85 31.34

Fig. 6: Examples on NeRF Synthetic – Our multi-scale approach consistently fills
in the holes in the input point cloud. PointNeRF relies on ‘pruning’ and ‘growing’
heuristics, which can fail where the point cloud is not sufficiently dense, as shown here.
While Gaussian Splatting also previous failed to fill in holes with their densification
heuristics (Fig. 4 and Fig. 5), for NeRF Synthetic these heuristics work well.

4.4 NeRF Synthetic results – Fig. 6 and Tab. 3

Finally, we verify the effectiveness of our method on NeRF Synthetic, to demon-
strate that it remains helpful even use-cases designed for NeRF.
Baselines. We compare our approach against both methods that only utilize
RGB images [29], which this dataset is typically used to evaluate, and those that
use point clouds [25,53,57], including the recent Gaussian Splatting [23].
Discussions. We report PSNR results in Tab. 3 and provide qualitative exam-
ples in Fig. 6. Our method still performs best overall, slightly ahead of Gaussian
Splatting. More importantly, it outperforms the point-based baselines by a larger
margin.

4.5 Ablation study

We thoroughly ablate our method in this section on KITTI-360 using the vali-
dation split. We consider the number of scale levels, using a tri-plane vs an MLP



PointNeRF++ 13

Table 4: Number of scales vs rendering
quality – As expected, more levels lead to bet-
ter PSNR↑. We always use a global scale—‘0’
corresponds to using only a global scale, ‘1’ the
finest scale plus the global scale, and later adding
coarser scale levels, up to our full model (‘4’).

Num. of scales PSNR↑ SSIM↑ LPIPS↓

0 17.95 0.520 0.442
1 19.88 0.674 0.283
2 19.89 0.669 0.289
3 19.90 0.666 0.299
4 20.05 0.665 0.305

Table 5: Number of points – We
show that our method remains ap-
plicable to sparser point clouds, with
noticeable improvement over points-
agnostic model even at drastic down-
sampling rates (1%).

Ratio of pts. PSNR↑ SSIM↑ LPIPS↓

0 17.95 0.520 0.442
1 18.71 0.558 0.434
10 19.35 0.621 0.370
full 20.05 0.665 0.305

Fig. 7: Rendering across scales – We study the behavior of our hierarchical ap-
proach by rendering an image adding one scale level at a time, from the global scale to
the finest one. As expected, the coarse scales are responsible for filling in empty regions
(highlighted with red boxes) in the point cloud, different from the well-covered regions
(highlighted with green boxes) that can be modeled via fine scales.

for F at the coarsest scale levels, and study the effect of adding a global scale.
We also evaluate performance at different levels of point cloud sparsity.

Number of scale levels – Tab. 4 and Fig. 7. We ablate how the number
of scale levels affects performance, by training and evaluating models using a
different number of scales. We also illustrate what each scale level is adding,
by rendering views with a multi-scale model adding one scale level at a time,
in Fig. 7. As clearly shown in the figure, the global scale is instrumental in
rendering accurate pixels in those areas, and each successive scale adds finer
details, improving the overall quality of the rendering.

Tri-plane vs MLP – Tab. 6. We also provide an ablation study to evaluate the
advantages of using a tri-plane instead of a regular MLP for the parameterized
function F . As outlined in Sec. 3.3, we always use MLPs at the two finest scale
levels. Using a tri-plane performs slightly better at a similar computational cost.



14 Sun et al.

Table 6: Impact of the tri-
plane – We evaluate tri-planes
vs. MLPs. Using tri-planes for the
coarsest scales improves perfor-
mance, at a comparable computa-
tional cost.

PSNR↑ SSIM↑ LPIPS↓

MLP 19.59 0.643 0.353
Triplane 20.05 0.665 0.305

Table 7: Using a global feature – We mea-
sure PSNR↑ on two datasets for different vari-
ants of our approach. Adding a global voxel at
the coarsest scale to the hierarchical structure
(right), improves performance (left), but is not
sufficient by itself (middle).

PSNR↑ SSIM↑ LPIPS↓

w/o global 19.78 0.675 0.290
global only 17.95 0.520 0.442
full 20.05 0.665 0.305

Using a global voxel – Tab. 7. We evaluate the importance of adding a global
voxel at the coarsest scale. We compare three variants of our method: one using
four local scales (“w/o global”); one using only the global scale (“global-only”),
i.e., a traditional point-agnostic NeRF; and one using both (“full”). The point-
based formulation outperforms point-agnostic NeRF, but combining them with
our multi-scale-plus-global approach does best.

Number of points – Tab. 5. We measure performance while randomly down-
sampling the point cloud with increasing ratios. Our approach performs while
even at downsampling rates below 1% and using as few as 10k points.

5 Conclusions

Neural Radiance Fields are a paradigm shift in novel-view synthesis. Despite
their promise, and a large number of follow-up papers, challenges persist, par-
ticularly when few views of the scene are available. Point clouds provide a very
attractive data stream, complementary to images, and often readily available in
both indoor and outdoor settings—but have a different set of challenges, due to
incompleteness and sparsity. We mitigate this with a simple yet novel multi-scale
representation that combines global and local information, yielding significant
performance improvements across the board. Our work unifies point cloud-based
and standard NeRF pipelines and adapts effectively to variable point densities
and empty regions, pushing novel view synthesis on uncontrolled, real-world data
closer to practice.

Limitations and future work. While our method provides significant im-
provements over PointNeRF by combining point-based ones with classic NeRF,
the computational cost of our method is naturally bound by classic NeRF—on
NeRF Synthetic, our method induces a 20% in compute overhead to the classic
NeRF backbone that we use. Thus, an interesting research direction would be
to combine the strengths of our multi-scale strategy in handling incomplete and
sparse point clouds with the high computational-efficiency of 3D Gaussian Splat-
ting [23], especially given the pitfalls of 3D Gaussian Splatting demonstrated in
our work.



PointNeRF++ 15

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A Multiscale Representation for Anti-aliasing Neural Radi-
ance Fields. In: ICCV (2021) 9, 10, 12

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: unbounded anti-aliased neural radiance fields. CVPR (2022) 3, 8

3. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G., Beijbom, O.: NuScenes: A Multimodal Dataset for Au-
tonomous Driving. In: CVPR (2020) 2

4. Chang, J.H.R., Chen, W.Y., Ranjan, A., Yi, K.M., Tuzel, O.: Pointersect: Neural
Rendering with Cloud-Ray Intersection. In: CVPR (2023) 3, 4

5. Chang, M., Sharma, A., Kaess, M., Lucey, S.: Neural Radiance Field with LiDAR
maps. In: ICCV (2023) 3, 4

6. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial Radiance Fields.
In: ECCV (2022) 3

7. Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: MVSNeRF: Fast
Generalizable Radiance Field Reconstruction from Multi-view Stereo. In: ICCV
(2021) 1, 3

8. Chen, X., Zhang, Q., Li, X., Chen, Y., Feng, Y., Wang, X., Wang, J.: Hallucinated
Neural Radiance Fields in the Wild. In: CVPR (2022) 3

9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: Richly-annotated 3d Reconstructions of Indoor Scenes. In: CVPR. pp. 5828–
5839 (2017) 3, 8, 9, 10, 11, 1

10. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time Globally Consistent 3d Reconstruction Using on-the-fly Surface Reintegra-
tion. TOG (2017) 8

11. Deng, C., Jiang, C., Qi, C.R., Yan, X., Zhou, Y., Guibas, L., Anguelov, D.: NeRDi:
single-view nerf synthesis with language-guided diffusion as general image priors.
In: CVPR (2023) 1

12. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-Planes:
Explicit Radiance Fields in Space, Time, and Appearance. In: CVPR (2023) 3, 7

13. Fridovich-Keil and Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels:
Radiance Fields without Neural Networks. In: CVPR (2022) 3, 12

14. Gao, K., Gao, Y., He, H., Lu, D., Xu, L., Li, J.: NeRF: Neural Radiance Field in
3d Vision, a Comprehensive Review. ARXIV (2022) 3

15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets Robotics: The KITTI
Dataset. IJRR (2013) 2

16. Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A.S.,
Hauswald, L., Pham, V.H., Mühlegg, M., Dorn, S., et al.: A2d2: Audi Autonomous
Driving Dataset. ARXIV (2020) 2

17. Gruber, T., Julca-Aguilar, F., Bijelic, M., Heide, F.: Gated2Depth: Real-Time
Dense Lidar From Gated Images. In: ICCV (2019) 2

18. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
Neural Radiance Fields for Real-Time View Synthesis. In: ICCV (2021) 3

19. Hu, T., Xu, X., Chu, R., Jia, J.: TriVol: Point Cloud Rendering via Triple Volumes.
In: CVPR (2023) 4

20. Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape
Open Dataset for Autonomous Driving and Its Application. TPAMI (2019) 2



16 Sun et al.

21. Jain, A., Tancik, M., Abbeel, P.: Putting NeRF on a Diet: Semantically Consistent
Few-Shot View Synthesis. In: ICCV (2021) 1, 3

22. Jiang, W., Yi, K.M., Samei, G., Tuzel, O., Ranjan, A.: Neuman: Neural Human
Radiance Field from a Single Video. In: ECCV (2022) 3

23. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian Splatting for
Real-Time Radiance Field Rendering. TOG (2023) 3, 4, 9, 10, 11, 12, 14

24. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-Based Neural Ren-
dering with Per-View Optimization. In: CGF (2021) 9, 10

25. Kulhanek, J., Sattler, T.: Tetra-NeRF: Representing Neural Radiance Fields Using
Tetrahedra. ARXIV (2023) 4, 12

26. Kundu, A., Genova, K., Yin, X., Fathi, A., Pantofaru, C., Guibas, L.J., Tagliasac-
chi, A., Dellaert, F., Funkhouser, T.: Panoptic Neural Fields: A Semantic Object-
aware Neural Scene Representation. In: CVPR (2022) 9, 10

27. Liao, Y., Xie, J., Geiger, A.: KITTI-360: A Novel Dataset and Benchmarks for
Urban Scene Understanding in 2d and 3d. PAMI (2022) 2, 3, 7, 9, 10, 1

28. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: NeRF in the wild: Neural Radiance Fields for Unconstrained Photo
Collections. In: CVPR (2021) 3

29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In:
ECCV (2020) 1, 3, 5, 8, 9, 10, 11, 12

30. Müller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. TOG (2020) 3, 12

31. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S.M., Geiger, A., Radwan,
N.: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse
Inputs. In: CVPR (2022) 1, 3

32. Ost, J., Laradji, I., Newell, A., Bahat, Y., Heide, F.: Neural Point Light Fields. In:
CVPR (2022) 1, 3, 4

33. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable Neural Radiance Fields. In: CVPR (2021) 3

34. Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: HyperNeRF: A Higher-Dimensional Representation for
Topologically Varying Neural Radiance Fields. TOG (2021) 3

35. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic Differentiation in PyTorch. In:
NIPS-W (2017) 8

36. Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable
Neural Radiance Fields for Modeling Dynamic Human Bodies. In: ICCV (2021) 3

37. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural
Radiance Fields for Dynamic Scenes. In: CVPR (2020) 3

38. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. CVPR (2016) 2

39. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. NIPS (2017) 2

40. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: Speeding up Neural Radiance
Fields with Thousands of Tiny MLPs. In: ICCV (2021) 3

41. Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P.P., Mildenhall, B., Geiger, A.,
Barron, J.T., Hedman, P.: MERF: Memory-Efficient Radiance Fields for Real-time
View Synthesis in Unbounded Scenes. SIGGRAPH 2023 (2023) 3

42. Rematas, K., Liu, A., Srinivasan, P.P., Barron, J.T., Tagliasacchi, A., Funkhouser,
T., Ferrari, V.: Urban Radiance Fields. In: CVPR (2022) 1, 3, 8



PointNeRF++ 17

43. Riegler, G., Koltun, V.: Free view synthesis. In: ECCV (2020) 9, 10
44. Schonberger, J.L., Frahm, J.M.: Structure-from-motion Revisited. In: CVPR

(2016) 4, 8
45. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,

J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J.,
Chen, Z., Anguelov, D.: Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. In: CVPR (2020) 2

46. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-NeRF: Scalable large scene neural view synthesis.
In: CVPR (2022) 3

47. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and Deformable Convolution for Point Clouds. In: ICCV (2019)
1

48. Wang, F., Louys, A., Piasco, N., Bennehar, M., Roldão, L., Tsishkou, D.: PlaN-
eRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale Scene
Reconstruction. 3DV (2023) 9, 10

49. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment:
from Error Visibility to Structural Similarity. TIP (2004) 7

50. Wu, X., Xu, J., Zhang, X., Bao, H., Huang, Q., Shen, Y., Tompkin, J., Xu, W.:
ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene
Rendering. In: TOG (2023) 3

51. Wynn, J., Turmukhambetov, D.: Diffusionerf: Regularizing Neural Radiance Fields
with Denoising Diffusion Models. In: CVPR (2023) 1, 3

52. Xu, D., Jiang, Y., Wang, P., Fan, Z., Wang, Y., Wang, Z.: NeuralLift-360: Lifting
an In-the-Wild 2D Photo to a 3D Object With 360deg Views. In: CVPR (2023) 3

53. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-
NeRF: Point-based Neural Radiance Fields. In: CVPR (2022) 1, 3, 4, 6, 7, 8, 9,
10, 11, 12

54. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: Neural Radiance Fields
from One or Few Images. In: CVPR (2021) 1, 3

55. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In: CVPR (2018) 7

56. Zhang, X., Kundu, A., Funkhouser, T., Guibas, L., Su, H., Genova, K.: Nerflets:
Local Radiance Fields for Efficient Structure-aware 3d Scene Representation from
2d supervision. In: CVPR (2023) 9, 10

57. Zhang, Y., Huang, X., Ni, B., Li, T., Zhang, W.: Frequency-Modulated Point Cloud
Rendering with Easy Editing. In: CVPR (2023) 12



PointNeRF++ 1

Supplementary Material

We detail mutl-scale point generation and coordinate system of the global
triplane. Furthermore, in the provided https://pointnerfpp.github.io, we
provide more rendering results.

A Multi-scale Point Generation via Grid-subsampling

We build multi-scale points from an input point cloud using grid subsampling,
which is more robust to varying density as shown in KPConv [47]. Specifically,
a new support point at each scale is the barycenter of the original input points
contained in a grid cell. Thereby, we control the scale and density at each level
via the grid size of cells.

We set the grid size at the level s as ω ∗ γs−1 where ω is the initial grid size
at the first level and γ is the stride size. We use the larger grid size for severely
incomplete point clouds and a small grid size for the complete point cloud.
Specifically, for KITTI-360 [27], we set ω as 8cm and γ as 2.92. As a result, the
grid size at the coarsest point level (i.e., s=4) is 2 meters. For ScanNet [9], we
set ω as 0.008 and γ as 2.0. For Nerf Synthetic [29] where point clouds are
relatively complete, we set ω as 0.004 and γ as 1.6.

B The Coordinate System of Global Triplane

We align world coordinate system and the normalized coordinate system of global
triplane. We utilize the principal component analysis (PCA) to calculate the
reference coordinate frame of input point cloud. The resultant reference frame
consists of rotation, translation and scale, thereby defining the alignment ma-
trix transforming world coordinates to coordinate system of global triplane. In
ScanNet [9] and Nerf Synthetic [29] where points distribute uniformly along
three axes and center at the origin, we simply normalize world coordinates using
the scale part of reference frame. For KITTI 360 [27], we use full reference frame
instead – i.e., we rotate, translate and scale the world coordinates – because,
in this dataset, the car moves along one major direction, leading to the points
heavily unbalanced along three axes. With this PCA-based canonicalization, we
compactly compress all possible query points into triplane’s normalized frame,
allowing for fully utilizing the capacity of global triplane.

C More rendering results

We furthermore provide more rendering results – rendering more frames and
forming videos. For more details, please refer to https://pointnerfpp.github.
io.

https://pointnerfpp.github.io
https://pointnerfpp.github.io
https://pointnerfpp.github.io

	PointNeRF++: A multi-scale, point-basedNeural Radiance Field

